skip to main content


Search for: All records

Creators/Authors contains: "Wong, O. I."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We explore the properties of an ‘almost’ dark cloud of neutral hydrogen (H i) using data from the Widefield ASKAP L-band Legacy All-sky Survey (WALLABY). Until recently, WALLABY J103508 − 283427 (also known as H1032 − 2819 or LEDA 2793457) was not known to have an optical counterpart, but we have identified an extremely faint optical counterpart in the Dark Energy Spectroscopic Instrument (DESI) Legacy Imaging Survey Data Release 10. We measured the mean g-band surface brightness to be 27.0 ± 0.3 mag arcsec−2. The WALLABY data revealed the cloud to be closely associated with the interacting group Klemola 13 (also known as HIPASS J1034 − 28 and the Tol 9 group), which itself is associated with the Hydra cluster. In addition to WALLABY J103508 − 283427/H1032 − 2819, Klemola 13 contains 10 known significant galaxies and almost half of the total H i gas is beyond the optical limits of the galaxies. By combining the new WALLABY data with archival data from the Australia Telescope Compact Array, we investigate the H i distribution and kinematics of the system. We discuss the relative role of tidal interactions and ram pressure stripping in the formation of the cloud and the evolution of the system. The ease of detection of this cloud and intragroup gas is due to the sensitivity, resolution, and wide field of view of WALLABY, and showcases the potential of the full WALLABY survey to detect many more examples.

     
    more » « less
  2. ABSTRACT

    We present a pilot study of the atomic neutral hydrogen gas (H i) content of ultra-diffuse galaxy (UDG) candidates. In this paper, we use the pre-pilot Eridanus field data from the Widefield ASKAP L-band Legacy All-sky Blind Survey to search for H i in UDG candidates found in the Systematically Measuring Ultra-diffuse Galaxies survey (SMUDGes). We narrow down to 78 SMUDGes UDG candidates within the maximum radial extents of the Eridanus subgroups for this study. Most SMUDGes UDGs candidates in this study have effective radii smaller than 1.5 kpc and thus fail to meet the defining size threshold. We only find one H i detection, which we classify as a low-surface-brightness dwarf. Six putative UDGs are H i-free. We show the overall distribution of SMUDGes UDG candidates on the size–luminosity relation and compare them with low-mass dwarfs on the atomic gas fraction versus stellar mass scaling relation. There is no correlation between gas-richness and colour indicating that colour is not the sole parameter determining their H i content. The evolutionary paths that drive galaxy morphological changes and UDG formation channels are likely the additional factors to affect the H i content of putative UDGs. The actual numbers of UDGs for the Eridanus and NGC 1332 subgroups are consistent with the predicted abundance of UDGs and the halo virial mass relation, except for the NGC 1407 subgroup, which has a smaller number of UDGs than the predicted number. Different group environments suggest that these putative UDGs are likely formed via the satellite accretion scenario.

     
    more » « less
  3. Abstract

    We report on the commensal ASKAP detection of a fast radio burst (FRB), FRB 20211127I, and the detection of neutral hydrogen (Hi) emission in the FRB host galaxy, WALLABY J131913–185018 (hereafter W13–18). This collaboration between the CRAFT and WALLABY survey teams marks the fifth, and most distant, FRB host galaxy detected in Hi, not including the Milky Way. We find that W13–18 has an Himass ofMHI= 6.5 × 109M, an Hi-to-stellar mass ratio of 2.17, and coincides with a continuum radio source of flux density at 1.4 GHz of 1.3 mJy. The Higlobal spectrum of W13–18 appears to be asymmetric, albeit the Hiobservation has a low signal-to-noise ratio (S/N), and the galaxy itself appears modestly undisturbed. These properties are compared to the early literature of Hiemission detected in other FRB hosts to date, where either the Higlobal spectra were strongly asymmetric, or there were clearly disrupted Hiintensity map distributions. W13–18 lacks a sufficient S/N to determine whether it is significantly less asymmetric in its Hidistribution than previous examples of FRB host galaxies. However, there are no strong signs of a major interaction in the optical image of the host galaxy that would stimulate a burst of star formation and hence the production of putative FRB progenitors related to massive stars and their compact remnants.

     
    more » « less
  4. null (Ed.)
    ABSTRACT In this paper, we present the identification of five previously unknown giant radio galaxies (GRGs) using Data Release 1 of the Radio Galaxy Zoo citizen science project and a selection method appropriate to the training and validation of deep learning algorithms for new radio surveys. We associate one of these new GRGs with the brightest cluster galaxy (BCG) in the galaxy cluster GMBCG J251.67741+36.45295 and use literature data to identify a further 13 previously known GRGs as BCG candidates, increasing the number of known BCG GRGs by $\gt 60$ per cent. By examining local galaxy number densities for the number of all known BCG GRGs, we suggest that the existence of this growing number implies that GRGs are able to reside in the centres of rich (∼1014 M⊙) galaxy clusters and challenges the hypothesis that GRGs grow to such sizes only in locally underdense environments. 
    more » « less
  5. ABSTRACT

    We present results from our analysis of the Hydra I cluster observed in neutral atomic hydrogen (H i) as part of the Widefield ASKAP L-band Legacy All-sky Blind Survey (WALLABY). These WALLABY observations cover a 60-square-degree field of view with uniform sensitivity and a spatial resolution of 30 arcsec. We use these wide-field observations to investigate the effect of galaxy environment on H i gas removal and star formation quenching by comparing the properties of cluster, infall, and field galaxies extending up to ∼5R200 from the cluster centre. We find a sharp decrease in the H i-detected fraction of infalling galaxies at a projected distance of ∼1.5R200 from the cluster centre from $\sim 85{{\ \rm per\ cent}}$ to $\sim 35{{\ \rm per\ cent}}$. We see evidence for the environment removing gas from the outskirts of H i-detected cluster and infall galaxies through the decrease in the H i to r-band optical disc diameter ratio. These galaxies lie on the star-forming main sequence, indicating that gas removal is not yet affecting the inner star-forming discs and is limited to the galaxy outskirts. Although we do not detect galaxies undergoing galaxy-wide quenching, we do observe a reduction in recent star formation in the outer disc of cluster galaxies, which is likely due to the smaller gas reservoirs present beyond the optical radius in these galaxies. Stacking of H i non-detections with H i masses below $M_{\rm {HI}}\lesssim 10^{8.4}\, \rm {M}_{\odot }$ will be required to probe the H i of galaxies undergoing quenching at distances ≳60 Mpc with WALLABY.

     
    more » « less
  6. null (Ed.)
    Aims. We present the results of three commissioning H  I observations obtained with the MeerKAT radio telescope. These observations make up part of the preparation for the forthcoming MHONGOOSE nearby galaxy survey, which is a MeerKAT large survey project that will study the accretion of gas in galaxies and the link between gas and star formation. Methods. We used the available H  I data sets, along with ancillary data at other wavelengths, to study the morphology of the MHONGOOSE sample galaxy, ESO 302-G014, which is a nearby gas-rich dwarf galaxy. Results. We find that ESO 302-G014 has a lopsided, asymmetric outer disc with a low column density. In addition, we find a tail or filament of H  I clouds extending away from the galaxy, as well as an isolated H  I cloud some 20 kpc to the south of the galaxy. We suggest that these features indicate a minor interaction with a low-mass galaxy. Optical imaging shows a possible dwarf galaxy near the tail, but based on the current data, we cannot confirm any association with ESO 302-G014. Nonetheless, an interaction scenario with some kind of low-mass companion is still supported by the presence of a significant amount of molecular gas, which is almost equal to the stellar mass, and a number of prominent stellar clusters, which suggest recently triggered star formation. Conclusions. These data show that MeerKAT produces exquisite imaging data. The forthcoming full-depth survey observations of ESO 302-G014 and other sample galaxies will, therefore, offer insights into the fate of neutral gas as it moves from the intergalactic medium onto galaxies. 
    more » « less
  7. Abstract The Murchison Widefield Array (MWA) is an open access telescope dedicated to studying the low-frequency (80–300 MHz) southern sky. Since beginning operations in mid-2013, the MWA has opened a new observational window in the southern hemisphere enabling many science areas. The driving science objectives of the original design were to observe 21 cm radiation from the Epoch of Reionisation (EoR), explore the radio time domain, perform Galactic and extragalactic surveys, and monitor solar, heliospheric, and ionospheric phenomena. All together $60+$ programs recorded 20 000 h producing 146 papers to date. In 2016, the telescope underwent a major upgrade resulting in alternating compact and extended configurations. Other upgrades, including digital back-ends and a rapid-response triggering system, have been developed since the original array was commissioned. In this paper, we review the major results from the prior operation of the MWA and then discuss the new science paths enabled by the improved capabilities. We group these science opportunities by the four original science themes but also include ideas for directions outside these categories. 
    more » « less